$\underbrace{\text { Harsco }} S^{\in \Gamma V}$

Cryostorage Systems
for medical, scientific and industrial applications

Taylor-Wharton Cryo-Science Technologies

"Technology you can rely on"

Taylor-Wharton Cryogenics belongs to the Harsco GasServ Group, a leading manufacturer with over 40 years of experience in the design and production of cryogenic storage vessels for liquefied gases.

Facilities in the USA, Europe, Malaysia and China produce a wide range of equipment, including cryogenic vessels for transport and storage as well as containers for the storage of liquefied gases ranging in size from 3 to 400,000 liters.

Our customers can rely on the advice and service of a competent sales organization with a worldwide presence.

The number of applications for liquefied gases is constantly increasing. Special vessels are needed not only for cryogenic storage of biological material but also for many industrial applications. Examples include the production of semiconductors and microchips (high purity gases), laser welding, shock and dry freezing processes as well as large dispensing systems for carbonated beverages such as those found in stadiums and similar venues.

Taylor-Wharton cryogenic vessels are based on the principle of complete thermal insulation. They consist of an inner vessel and an outer body separated by a stable vacuum, which virtually precludes any transfer of heat from the ambient environment to the inner vessel. Additional layers provide what is referred to as superinsulation to protect the vessel against the warming effect of infrared radiation.

Taylor-Wharton cryogenic vessels are designed to hold either canisters or racks. Depending on the application the material can be stored in the liquid phase or in the vapour phase of the tank.

K Series Cryogenic Storage Systems

K Series systems are used throughout the world wherever it is necessary to store biological specimens or larger objects such as organs for transplantation. Like all Taylor-Wharton vessels, the ultra high capacity refrigerators use nitrogen in liquid or vapor phase for cooling. This provides a series of important benefits as compared with mechanical refrigeration systems, especially in terms of environmental considerations:

- Greater reliability • No heat output • Silent operation
- Lower temperature - Virtually maintenance-free - Safety back up to power failures

Taylor-Wharton K Series systems are designed to accommodate various inventory control systems. The high capacity makes it possible to hold up to $38,3502 \mathrm{ml}$ vials or up to $739,5000,25 \mathrm{ml}$ straws. Normally 10 K and larger systems are connected to a liquid nitrogen tank by means of a hose (see p. 14) equipped with a CryoCon unit, which is an electronic Taylor-Wharton automatic level controller that is available in various models (see p. 8/9).

In case it is necessary to make absolutely sure that specimens do not come into contact with liquid nitrogen (to avoid cross contamination), it is possible to place a gas phase frame inside the system. The liquid tight frame ensures a reliable separation of the specimen from the liquid nitrogen and at the same time functions as a guide for the individual racks (see p. 11).
10 K and larger systems are available with the CE mark in compliance with the Medical Devices Directive MDD 93/42 EC.

Specifications

Models	3K	10K	24K	38K
LN 2 capacity 1	48	165	365	590
Overall diameter (width x depth)	391	587×775	864×965	1067×1397
Overall height (with lid open) $\quad \mathrm{mm}$	-	1753	1930	2286
Overall height mm	754	1118	1118	1245
Internal diameter mm	356	533	787	991
Useable height mm	488	737	737	737
Evaporation rate ${ }^{(1)} \quad 1 / 24 \mathrm{~h}$	2,5	5,0	7,0	8,0
Static holding time ${ }^{(1)}$ Days	19	33	52	74
Weight, empty kg	19,1	111,0	184,0	256,0
Weight, full (without inventory control systems) kg	56,7	243,0	474,0	733,0
Recommended LN2 supply tank	XL Series	XL Series	XL Series	XL Series
Suitable for bag storage	-	-	-	-
Special remarks	Optional roller base recommended (see p. 26)	90 mm distance rear to wal required	270 mm distance rear to wall required	1155 mm door widh requirea

${ }^{(1)}$ Evaporation rate and static holding time are nominal. Actual rate may be affected by the nature of the contents, atmospheric conditions, container history and manufacturing tolerances

Straw Capacity					
Number of canisters 67mm	21	46	107	174	
Number of levels (goblets)	3	5	5	5	
Number of goblets 65 mm	63	230	535	870	
Number of straws $0,25 \mathrm{ml}$	53.550	195.500	454.750	739.500	
Number of straws $0,50 \mathrm{ml}$	23.940	87.400	203.300	330.600	

Vial Capacity

Liquid phase	3.726	10.400	24.050	38.350
Vapor phase	2.484	8.800	20.350	32.450
Vapor phase with sealed frame	-	9.100	21.775	-

Laboratory Archival Biological Storage

LABS Series freezers are designed for efficient long-term storage of larger volumes of specimens. With a capacity of up to $80,0002 \mathrm{ml}$ vials, a storage temperature virtually at the level of the liquid nitrogen temperature even in the gas phase and low nitrogen consumption, the LABS Series sets new industry benchmarks. In addition to this exceptional performance, these freezers also feature ergonomic design.
For example, the flat stainless-steel table-top makes a convenient working surface, and a folding step permits easier access to the stored material. The extremely easy-to-rotate turntable with aluminum deviders permits quick, convenient access to the inventory control system as well as easy sample location. Each compartment is colour coded.
All models are available with automatic level controllers and the CE mark in compliance with Medical Devices Directive MDD 93/42EC.
The hinged booted lid is easy to operate and to clean. The lid switch provides signals to the optional controller for lid open alarm, auto defog and quick chill.

Specifications			
Models	LABS 20K	LABS 40K	LABS 80K
LN_{2} capacity 1	407	606	1350
LN_{2} capacity below platorm 1	46	76	140
Overall diameter mm	864	1143	1511
Overall height mm	1455	1455	1455
Working height from step to lid opening mm	1080	1080	1080
Internal diameter mm	750	1029	1397
Useable height $\quad \mathrm{mm}$	762	762	762
Neck diameter mm	330	457	622
Reference value evaporation rate ${ }^{(1)} 1 / 24 \mathrm{~h}$	4	4,5	8
Evaporation rate ${ }^{(2)} \quad 1 / 24 \mathrm{~h}$	7	8,8	11
Static holding time ${ }^{(2)}$ Days	102	135	169
Weight, empty kg	295	417	703
Weight, full (without inventory control systems)	624	907	1794
Recommended LN2 supply tank	XL-Series	XL-Series	XL-Series
Max. capacity 2 ml vials in liquid/vapor phase	19.500	41.600	79.300
Suitable for bag storage	-	-	-

(1) Reference value without turntable
${ }^{(2)}$ Evaporation rate and static holding time are nominal. Actual rate may be affected by the nature of the contents, atmospheric conditions, container history and manufacturing tolerances

Straw Capacity				
Number of canisters 67 mm	79	156	313	
Number of levels (goblets)	5	5	5	
Number of goblets 65 mm	395	780	1.565	
Number of straws $0,25 \mathrm{ml}$	335.750	663.000	1.330 .250	
Number of straws $0,50 \mathrm{ml}$	150.100	296.400	594.700	

Electronic Controllers

Automatic Level Controllers

CryoCon automatically monitors and controls the level of liquid nitrogen
The CryoCon controller comes with an array of features and options for flexibility in the combination of vessels, in the choice of liquid nitrogen supply and controls and in the programming and documentation through a PC or a computer.

CryoCon AFT-3L

Features

- Level display
- Level monitoring and automatic refilling
- Temperature display
- Temperature control
- Alarms for high temperature, level, sensor fault, low nitrogen supply, open lid, unauthorized access
- Manual filling
- Data logging with serial port for PC/printer for temperature, level, alarm, filling activity, etc.
- Simultaneous or sequential filling in the case of multiple installations
- Connection for centralized gas bypass control
- Automatic defogging when lid is open
- Quick chill when lid is closed
- Password-controlled access and programming
- Update of controller software through PC and Cable
- Updated software can be forwarded by e-mail or CD

Options

- RS 485 interface
- Gas bypass individual
- $4-20 \mathrm{~mA}, 0-2$ and $0-10 \mathrm{~V}$ interface for temperature recording
- CryoData PC software
- PC/Printer cable

CryoCon AF-1D

Features

- Level indication
- Alarms for level, lid open, low nitrogen supply and sensor fault
- Level monitoring and automatic refilling
- Automatic defogging when lid is opened
- Quick chill when lid is closed
- Manual filling

CryoVent M360 Gas Bypass System

Typically cryogenic storage installations consist of one more refrigerators connected by insulated pipework to a bulk liquid nitrogen supply vessel. When filling one or more refrigerators, the cooling down of the lines creates substantial volumes of gas. This gas, which is normally forced out through the liquid in the refrigerator and into the room, can cause various problems:

- Ice build up
- Warming up and evaporation of nitrogen inside the vessel
- Low oxygen concentration inside the room

The use of a Taylor-Wharton CryoVent M360 gas bypass system avoids these problems.

Operation of the M360

- When one of the refrigerators begins to fill, the simultaneous fill signal from the controller signals to the M360 controller that liquid is required.
- The M360 controller sends out a signal to all controllers of the refrigerators disconnecting the fill valves and preventing the filling. At the same time a valve is opened to vent gas from the pipe-work.
- When all gas has been exhausted from the pipe-work the presence of liquid at the vent valve is detected by the thermocouple sensor. The M360 closes the vent valve and allows the fill valves to operate and fill the refrigerators.
- A second temperature sensor installed downstream of the first sensor triggers an alarm upon contact with LN_{2} in order to avoid that liquid nitrogen passes through the ventline.

Preservation and Archiving

Computer-Controlled Freezers

for cryogenic preservation of biological specimens

Sy-Lab's new ICECUBE Series uses advanced computer technology to create, control and run freezing programs. The system features a touch screen user interface and is available with 16,36 and 72 I chambers. It is designed to freeze straws, vials or blood bags and can be used for IVF, cell lines, umbilical cord blood, bone marrow/stem cells, skin, homografts, etc.

Further highlights include the transparent chamber lid, permanent LN2 supply pressure monitoring, crystallization through auto seeding or vibration and data archiving on a built-in advanced PC with LAN card.

Specifications available upon request.

Sample Vision

for efficient data archiving and localization of samples
Sample Vision is one of the most advanced software programs available for controlling, archiving and documenting large volumes of data on cryostored biogenic materials and samples. The program permits accurate storage and localization of each individual sample and offers an array of options in combination with other important data. Access to data can be completely or partially restricted. With Sample Vision, it takes only seconds to search through thousands of samples for compliance with different combinations of data.

Functions:

- Search for one or all samples from any group of samples
- Password-protected access for any or all samples
- Supports any browser
- Practice-based increase in the number of search areas
- Reports can be viewed on monitor
- Language same as that selected for PC
- Can be accessed and controlled through intranet or web-enabled

Inventory Control Systems for Vials

 Inventory Control Systems for VialsTaylor-Wharton inventory control systems are specifically designed for different types of vessels which are part of the cryo-science technology. They accommodate standard 2 ml vials. Various material combinations are available for different vessels. Other systems are also available upon request.

- Aluminum racks with boxes of plastic or special cardboard
- Standard for 3 K : aluminum racks and drawers, plastic vial dividers

Model	Rack Arrangement	Storage phase	Number of triangular aluminum racks	Shelves per rack	Number of plastic dividers	Total number of 2 ml vials
	Liquid	6	9	54	3.726	
	Vapor	6	6	36	2.484	

Model	Rack Arrangement	Storage phase	Number of aluminum racks		Shelves per rack	Number of cryoboxes		Total number of 2 ml vials
			5×5	10×10		5×5	10×10	
10K		Liquid	4	7	13	52	91	10.400
		Vapor	4	7	11	44	77	8.800
24K		Liquid	6	17	13	78	221	24.050
		Vapor	6	17	11	66	187	20.350
38K	0^{0}	Liquid	6	28	13	78	364	38.350
	(5	Vapor	6	28	11	66	308	32.450
$\begin{aligned} & \text { LABS } \\ & \text { 20K } \end{aligned}$		Vapor/Liquid	4	14	13	52	182	19.500
$\begin{gathered} \text { LABS } \\ \text { 40K } \end{gathered}$		Vapor/Liquid	8	30	13	104	390	41.600
$\begin{gathered} \text { LABS } \\ 80 \mathrm{~K} \end{gathered}$		Vapor/Liquid	12	58	13	156	754	79.300

[^0]
Inventory Control Systems for Bags

Systems for the storage of transplants such as stem cells/bone marrow, erythrocyte
 concentrates, homografts, skin, etc., must meet special requirements. Taylor-Wharton offers systems that permit convenient, reliable handling, labeling and retrieval.

The systems consist of three components:

- Stainless steel frame to hold racks
- Aluminum racks that are inserted from above
- Boxes to hold the bags that are inserted into the racks from the side

The boxes are made of special high-quality cardboard that retains all of its properties when immersed in liquid nitrogen.
Various inventory control systems are available for standard bags. The choice of a system is based on the type and number of existing bags and the storage phase (liquid or gaseous).

Bag type
1
Cryocyte 50 (R9951)
Cryocyte 50 (R9951)
DF-170
DF-200
DF-200
Cryocyte 250 (R9953)
Cryocyte 500 (R9955) +
DF-700
DF-700
DF-700
DF-700
Cryocyte 750 (R9957)
Cryocyte 1000 (R9959)
DF-1000/1200
Eppendorf vials

"For the cryostorage of transplants, stem cells, erythrocyte concentrates and other biogenic materials"

Bag capacity Vapor/Liquid 2	$\begin{gathered} \text { Vessel type } \\ 3 \end{gathered}$	Storage phase Vapor/Liquid	Volume (ml)	Number of racks	Height units	$\begin{aligned} & \text { Box size } \\ & \text { inside (mm) } \end{aligned}$
(288/336) 384	10K	Vapor/Liquid	10-20	24	(6/7) 8	$146 \times 77 \times 16$
(672/784) 896	24K	Vapor/Liquid	10-20	56	(6/7) 8	$146 \times 77 \times 16$
48	3K	Vapor/Liquid	85	6	3/4	$211 \times 103 \times 16$
150/180	10K	Vapor/Liquid	85	30	5/6	$211 \times 103 \times 16$
160/192	10K	Vapor/Liquid	85	16	5/6	$211 \times 103 \times 16$
340/408	24K	Vapor/Liquid	85	68	5/6	$211 \times 103 \times 16$
400/480	24K	Vapor/Liquid	85	40	5/6	$211 \times 103 \times 16$
114/152	10K	Vapor/Liquid	100	19	3/4	$190 \times 155 \times 16$
252/336	24K	Vapor/Liquid	100	42	3/4	$190 \times 155 \times 16$
128/160	10K	Vapor/Liquid	30-70	16	4/5	$173,5 \times 133 \times 16$
144/180	10K	Vapor/Liquid	30-70	9	4/5	$350 \times 133 \times 16$
320/400	24K	Vapor/Liquid	30-70	40	4/5	$173,5 \times 133 \times 16$
352/440	24K	Vapor/Liquid	30-70	44	4/5	$350 \times 133 \times 16$
20/30	3K	Vapor/Liquid	55-100	5	2/3	$235 \times 133 \times 16$
108/135	10K	Vapor/Liquid	55-100	27	4/5	$235 \times 133 \times 16$
120/150	10K	Vapor/Liquid	55-100	15	4/5	$235 \times 133 \times 16$
260/325	24K	Vapor/Liquid	55-100	65	4/5	$235 \times 133 \times 16$
296/370	24K	Vapor/Liquid	55-100	37	4/5	$235 \times 133 \times 16$
72/96	10K	Vapor/Liquid	350	24	3/4	$282 \times 155 \times 16$
72/96	10K	Vapor/Liquid	350	12	3/4	$282 \times 155 \times 16$
156/208	24K	Vapor/Liquid	350	52	3/4	$282 \times 155 \times 16$
180/240	24K	Vapor/Liquid	350	30	3/4	$282 \times 155 \times 16$
16/24	3K	Vapor/Liquid	80-190	4	2/3	$275 \times 133 \times 16$
96/120	10K	Vapor/Liquid	80-190	24	4/5	$275 \times 133 \times 16$
104/130	10K	Vapor/Liquid	80-190	13	4/5	$275 \times 133 \times 16$
216/270	24K	Vapor/Liquid	80-190	60	4/5	$275 \times 133 \times 16$
240/300	24K	Vapor/Liquid	80-190	30	4/5	$275 \times 133 \times 16$
64/80	24K	Vapor/Liquid	125-270	16	4/5	$350 \times 133 \times 16$
72/90	10K	Vapor/Liquid	125-270	9	4/5	$350 \times 133 \times 16$
160/200	24K	Vapor/Liquid	125-270	40	4/5	$350 \times 133 \times 16$
176/220	24K	Vapor/Liquid	125-270	22	4/5	$350 \times 133 \times 16$
12	3K	Vapor	500-600	1	2	$355 \times 157 \times 38$
18	3K	Liquid	500-600	1	3	$355 \times 157 \times 38$
39/52	10K	Vapor/Liquid	500-600	13	3/4	$355 \times 157 \times 38$
42/56	10K	Vapor/Liquid	500-600	7	3/4	$355 \times 157 \times 38$
90/120	24K	Vapor/Liquid	500-600	30	3/4	$355 \times 157 \times 38$
96/128	24K	Vapor/Liquid	500-600	16	3/4	$355 \times 157 \times 38$
1050/1260	LS750	Vapor/Liquid	-	6	4/5	holds 42 vials

(1) DF is a trade name of Hemofreeze ${ }^{T M}$ of NPBI, NL. Cryocyte is a trade name of Nexell International.
(2) For storage in the gaseous phase, the bottom shelf remains empty and the liquid nitrogen must not be higher than the top of the bottom compartment.
(3) The numbers identify the vessel type with which the bags can be used ($3 \mathrm{~K}, 10 \mathrm{~K}$, etc.). Important: These are recommendations only where bags can be used with. Please observe the instructions of the bag manufacturer, especially with respect to material specification and thickness. The storage systems are designed so that individual drawers can be transferred from the liquid phase to the gaseous phase. Intermediate storage is possible in some containers in the vertical position and under the lid of the vessel.

Liquid Cylinders for Storage and Transportation

Three vessels from the wide range of XL liquid cylinders

Storage and transport cylinders for liquefied gases represent important components of the Taylor-Wharton Cryo-Science Technology. The inner and outer vessels are made of stainless steel, and all vessels comply with the European Directive 1999/36/EC for transportable pressure equipment (TPED).

Series XL70 to XL240

These cylinders are transportable units built to rugged construction standards. They are designed for the low-pressure requirements of liquid nitrogen filling, storing and dispensing and feature easy, quick liquid withdrawal.

Series XL45 to XL65

These road-transportable cylinders feature automatic pressure-building and economizer circuits. Low-loss holding capabilities help conserve gas during low demand periods. These units set the standard for liquid cylinder performance in the gas industry.

XL45CE

XL45 HP CE
XL50CE
XL55HPCE
XL65HPCE
with pressure-building
and economizer system
(8) Pressure relief valve
(0) PB regulator
(10) Pressure building valve
(11) Gas withdrawal (use) valve
(1) Outer bursting disc
(B) Pressure building coil

XT Extended Time Refrigerators

Specifications					
Models	XTL 3	XTL 8	XT 10	XT 20	XT 34
Static holding time ${ }^{(1)}$ Days	27	80	100	230	340
Working time ${ }^{(2)}$ Days	17	50	62	140	212
Evaporation rate ${ }^{(1)} \quad 1 / 24 \mathrm{~h}$	0,11	0,10	0,10	0,09	0,10
LN_{2} capacity ${ }^{(3)} 1$	3	8	10	20,7	34
Weight, empty kg	3,3	8,9	7,5	11,8	15,8
Weight, full ${ }^{(3)}$ kg	5,7	15,4	15,6	28,6	43,3
Neck diameter mm	51	51	51	51	51
Overall height mm	437	483	597	655	668
Overall diameter mm	193	396	290	396	478
Number of canisters	6	6	6	6	6
Canister dimensions ${ }^{(4)} \mathrm{mm}$	38×127	38×127	38×279	38×279	38×279
Number of 1.2 and 2.0 ml vials (5 per cane)	-	-	150	150	150
Number of 1.2 and 2.0 ml vials (6 per cane)	-	-	180	180	180
Number of 0.5 ml straws (10 per cane)	-	-	540	540	540
Number of 0.5 ml straws (bulk, 1 layer)	750	750	750	750	750
Number of 0.5 ml straws (bulk, 2 layers)	-	-	1.500	1.500	1.500

${ }^{(1)}$ Evaporation rate and holding time are nominal. Actual rate may be affected by the nature of the contents, atmospheric conditions, container history and manufacturing tolerances
${ }^{(2)}$ Working time is an arbitrary, reference-only value to estimate container performance under the actual operating conditions
(3) Without canisters
(4) Canister also available in 127 mm height for $\mathrm{XT10}, \mathrm{XT} 20$ and XT 34 models

Accessories (see also p. 26)

Roller base	-	R018-8C00	-	$R 018-8 C 00$	R033-8C00
Low liquid level alarm	-	-	-	$R 033-8 C 15$	R033-8C15

The roller base increases the overall height of the vessel by 110 mm

HC High-Capacity Refrigerators

Specifications					
Models	HCL 12	HC 20	HC 34	HC 35	VHC 35
Static holding time ${ }^{(1)}$ Days	60	87	200	130	130
Working time ${ }^{(2)}$ Days	37	54	125	81	81
Evaporation rate ${ }^{(1)} \quad 1 / 24 \mathrm{~h}$	0,20	0,23	0,17	0,27	0,27
L N_{2} capacity ${ }^{(3)}{ }^{(1)}$	12	20	34	35	35
Weight, empty kg	9,8	12	16,1	17,7	17,2
Weight, full ${ }^{(3)}$ kg	19,5	28,2	43,6	46,0	45,5
Neck diameter mm	91	91	91	119	119
Overall height mm	482	615	668	681	681
Overall diameter mm	396	396	478	478	478
Number of canisters	6	6	6	10	$6^{(4)}$
Canister dimensions mm	70×127	70×279	70×279	$67 \times 279^{(5)}$	94×279
Number of 1.2 and 2.0 ml vials (5 per cane)	-	570	570	850	1.050
Number of 1.2 and 2.0 ml vials (6 per cane)	-	684	684	1.020	1.260
Number of 0.5 ml straws (10 per cane)	-	1.850	1.850	2.800	3.000
Number of 0.5 ml straws (bulk, 1 layer)	2.940	2.940	2.940	4.900	4.950
Number of 0.5 ml straws (bulk, 2 layers)	-	5.880	5.880	9.800	9.900

${ }^{(1)}$ Evaporation rate and holding time are nominal. Actual rate may be affected by the nature of the contents, atmospheric conditions, container history and manufacturing tolerances
${ }^{(2)}$ Working time is an arbitrary, reference-only value to estimate container performance under the actual operating conditions
(3) Without canisters
(4) Optional a seventh canister is available for VHC 35 to increase storage capacity by 19%
(5) Canisters $70 \times 279 \mathrm{~mm}$ available on request

Accessories (see also p. 26)

Roller base	$\mathrm{R} 018-8 \mathrm{C} 00$	$\mathrm{R} 018-8 \mathrm{C} 00$	$\mathrm{R} 033-8 \mathrm{C} 00$	$\mathrm{R} 033-8 \mathrm{C} 00$	$\mathrm{R} 033-8 \mathrm{C} 00$
Low liquid level alarm	-	$\mathrm{R} 034-8 \mathrm{C} 15$	$\mathrm{R} 034-8 \mathrm{C} 15$	$\mathrm{R} 037-8 \mathrm{C} 15$	$\mathrm{R} 036-8 \mathrm{C} 30$

The roller base increases the overall height of the vessel by 110 mm

LD Liquid Nitrogen Dewars

"For the storage and distribution of small quantities of liquid nitrogen"

LD Series dewars are used to store and distribute small amounts of liquid nitrogen. They are ideal for various applications that call for the use of this medium, for example, in the area of materials testing. This series includes models with capacities ranging from 4 to 50 liters. A pitcher-style model (LD4) is available for easy pouring, as well as a beaker style model (LD5) with a wide mouth to make it easier to immerse objects in the liquid nitrogen. LD Series dewars feature extremely low evaporation rates and are convenient to use. Optional equipment includes - liquid withdrawal device, tipping stands, dippers and roller base.The „Classic 25 " is a model that has been found to be extremely practical. Because of its spherical shape and low center of gravity, it is easy to handle and is ideal for pouring liquid nitrogen.

Specifications

Models	LD 4	LD5	LD 10	LD 25	Classic 25	LD 35	LD50	
Static holding time	(1)	Days	10	6	45	109	119	152
Evaporation rate $^{(1)}$	$1 / 24$	h	0,40	0,77	0,22	0,23	0,21	0,23
LN_{2} capacity	1	4	5	10	25	25	35	50
Weight, empty	kg	3,0	3,1	6,6	10,5	8,6	16,0	17,6
Weight, full	kg	6,2	7,2	14,7	30,8	28,9	44,3	58,0
Neck diameter	mm	30	142	51	64	51	64	64
Overall height	mm	432	445	597	655	582	668	823
Overall diameter	mm	193	193	290	396	394	475	475

${ }^{(1)}$ Evaporation rate and holding time are nominal. Actual rate may be affected by the nature of the contents, atmospheric conditions, container history and manufacturing tolerances
Accessories (see asoo pp. 26/27)

Roller base	-	-	-	R018-8C00	D024-8C02	R033-8C00	R033-8C00
Tipping stand	-	-	-	D025-8C00	D025-8C00	upon request	upon request
Withdrawal device with phase separator	-	-	-	D250-8C05	-	D250-8C05	D250-8C05
Withdrawal hose 1.2 m	-	-	-	$1700-9 \mathrm{C} 65 \mathrm{~W}$	-	$1700-9 \mathrm{C} 65 \mathrm{~W}$	$1700-9 \mathrm{C} 65 \mathrm{~W}$
Withdrawal hose 1.8 m	-	-	-	$1600-9 \mathrm{C} 66 \mathrm{~W}$	-	$1600-9 \mathrm{C} 66 \mathrm{~W}$	$1600-9 \mathrm{C} 66 \mathrm{~W}$
LD hand truck	-	-	upon request				

With the new CXR series Taylor-Wharton offers a design to overcome the problems of cleaning the dry shippers.

- Replaceable absorbent
- Cleanable
- Larger necktube diameter
- More robust
- Meets IATA requirements
- Also available with approval acc. to Medical Device Directive MDD 93/42 EC

Specifications		
Models	CXR 100	CXR 500
Static holding time ${ }^{(1)} \quad$ Days	16	11
Working time ${ }^{(2)}$ Days	11	7
Evaporation rate ${ }^{(1)} \quad 1 / 24 \mathrm{~h}$	0,23	0,6
LN 2 capacity/absorbed 1	3,7	7,7
Weight, empty kg	5,3	13,6
Weight, full ${ }^{(3)} \mathrm{kg}$	8,3	19,8
Neck diameter mm	91	216
Overall height mm	493	683
Overall diameter mm	234	391
Number of canisters/ Canister dimensions ${ }^{(4)}$ mm	1/67x279	-
Number of 1.2 and 2.0 ml vials $(5 \text { per cane) })^{(4)} /\left(6\right.$ per cane) ${ }^{(4)}$	85/102	500
Number of 0.25 ml straws (bulk, 2 layer)	1.820	-
Number of 0.5 ml straws (10 per cane)	280	-
Number of 0.5 ml straws	490	-

${ }^{(1)}$ Evaporation rate and holding time are nominal. Actual rate may be affected by the nature of the contents, atmospheric conditions, container history and manufacturing tolerances
${ }^{(2)}$ Working time is an arbitrary, reference-only value to estimate container performance under the actual operating conditions
${ }^{\text {(3) }}$ Without canisters or racks
${ }^{(4)}$ CXR500: cryogenic vials are stored in 100 cell boxes

Accessories

Shipping case Dimensions W×D×H/weight mm/kg	$\begin{gathered} \text { CX10-8C00 } \\ 400 \times 400 \times 620 / 8,8 \end{gathered}$	$\begin{gathered} \text { CX50-8COO } \\ 480 \times 480 \times 760 / 14,0 \end{gathered}$
Padded carton Dimensions W×DxH/weight mm/kg	$\begin{gathered} 3701-9277 \\ 370 \times 370 \times 710 / 3,25 \end{gathered}$	-
Rack for 9 cryogenic blood bags	-	CP70-9C44
Rack for 5 cryogenic vial boxes	-	RS30-9C44
Cryo-Box 100	-	5026-1010
Data logger	M382CE	M385CE
PC cable with software ${ }^{(1)}$	M381CE	M381CE

CX Shippers

Cryo Express „dry shippers" are designed to transport a variety of materials at cryogenic temperatures safely. The unique absorbent material prevents a liquid spill if the unit is tipped over. This eliminates the danger of spills and represents a significant improvement in the shipment of biogenic material.

Storage temperature inside the shipping cavity remains at approximately $-150^{\circ} \mathrm{C}$ until the liquid nitrogen evaporates from the absorbent. This increases reliability, especially in the case of shipments involving long distances.

Due to the superior vacuum performance with super insulation these units provide maximum holding times. With these vessels and the shipping cases international shipment no longer represents a problem. The vessels comply with IATA
 regulations.

The optional available data logger records the storage temperature of biological material.
Also available with approval acc. to Medical Devices Directive MDD 93/42EC.

		Specifications	
Models		CX100	CX500
Static holding time ${ }^{(1)}$	Days	24	11
Working time ${ }^{(2)}$	Days	17	7
Evaporation rate ${ }^{(1)}$	1/24 h	0,18	0,6
L N_{2} capacity/absorbed	1	4,4	6,4
Weight, empty	kg	5,3	13,6
Weight, full ${ }^{(3)}$	kg	8,9	18,8
Neck diameter	mm	71	216
Overall height	mm	467	683
Overall diameter	mm	234	391
Number of canisters/	mm	1/67x279	-
Number of 1.2 and 2.0 ml vials (5 per cane) $)^{44} /(6 \text { per cane })^{(4)}$		85/102	500
Number of 0.25 ml straws (bulk, 2 layer)		1.820	-
Number of 0.5 ml straws (10 per cane)		280	-
Number of 0.5 ml straws		490	-

${ }^{(1)}$ Evaporation rate and holding time are nominal. Actual rate may be affected by the nature of the contents, atmospheric conditions, container history and manufacturing tolerances
${ }^{(2)}$ Working time is an arbitrary, reference-only value to estimate container performance under the actual operating conditions
(3) Without canisters or racks
${ }^{(4)} \mathrm{CX} 500$: cryogenic vials are stored in 100 cell boxes

Accessories

Shipping case Dimensions W×DxH/weight mm/kg	$\begin{gathered} \text { CX10-8C00 } \\ 400 \times 400 \times 620 / 8,8 \end{gathered}$	$\begin{gathered} \text { CX50-8C00 } \\ 480 \times 480 \times 760 / 14,0 \end{gathered}$
Padded carton Dimensions W×DxH/weight mm/kg	$\begin{gathered} 3701-9277 \\ 370 \times 370 \times 710 / 3,25 \end{gathered}$	-
Rack for 9 cryogenic blood bags	-	CP70-9C44
Rack for 5 cryogenic vial boxes	-	RS30-9C44
Cryo-Box 100	-	5026-1010
Data logger	M380CE	M385CE
PC cable with software ${ }^{(1)}$	M381CE	M381CE

[^1]

Data Logger

The data logger permits uninterrupted monitoring and logging of the temperature inside the CX and CXR shippers. This is indispensable in the case of valuable samples. The logger and thermocouple temperature sensor are contained within a modified neck plug therefore avoiding trailing wires or extra boxes which could become damaged or detached in transit.

The logger complies with the following standards:

- EMC Directive 89/336/EEC
- RTCA DO-160D Sect. 21.4, Radiated Emission - Cat. B (for safe operation on board aircraft)

Functions/Features:

- Measuring range: $-199^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (accuracy $+/-3^{\circ} \mathrm{C}$)
- Logging of up to 8192 temperature measurements in non-volatile memory
- Logging intervals can be set between 1 and 30 minutes
- Battery life of min. 5 years (non-rechargeable lithium battery)
- PC interface for setting up, collection and analysis of data
- LED status indication for recording (active/standby) and battery condition
- LED indication of too high temperature

Option:

- 'Tip Over' Switch - Detects if the shipper has been laid on its side during transport. The position is logged at the same time as the temperature. ‘Tip Over' is indicated in the temperature log and by LED.

LS Laboratory Systems

Specifications				
Models	LS 750	LS 3000	LS 4800	LS6000
Static holding time ${ }^{(1)}$ Days	130	106	162	194
Working time ${ }^{(2)}$ Days	80	66	102	120
Evaporation rate ${ }^{(1)} \quad 1 / 24 \mathrm{~h}$	0,27	0,76	0,80	0,84
LN_{2} capacity ${ }^{(3)}{ }^{(3)}$	35	81	130	165
Weight, empty kg	17,7	31,8	40,9	55,0
Weight, full ${ }^{(3)}{ }^{3} \mathrm{~kg}$	46,0	97,4	146,1	186,4
Neck diameter mm	119	216	216	216
Overall height mm	681	731	892	991
Overall diameter mm	478	683	683	683
Number of 2 ml vials	750	3.000	4.800	6.000
Cryobox dimensions mm	76×76	132×132	132×132	132×132
Number of vials per cryobox	25	100	100	100
Capacity for vapor phase storage	-	1.800	3.600	4.800

${ }^{(1)}$ Evaporation rate and holding time are nominal. Actual rate may be affected by the nature of the contents, atmospheric conditions, container history and manufacturing tolerances
${ }^{(2)}$ Working time is an arbitrary, reference-only value to estimate container performance under the actual operating conditions
(3) Without canisters or racks

Accessories (see pp. 8/9 +26)

Roller base	R033-8C00	R05K-8C00	R05K-8C00	R05K-8C00
Low liquid level alarm	R036-8C30	RS30K-8C40	R05K-8C26	RS60-8C40
CryoCon AF-1D autot level controller	-	M255K-LS	M255K-LS	M255K-LS
CryoCon AFT-3L				
auto. level controller	-	M505K BOX-LS	M505K BOX-LS	M505K BOX-LS

The roller base increases the overall height of the vessel by 110 mm Installation of a level controller adds an extra 200 mm to the overall height

Accessories

For convenient and safe withdrawal of small quantities of liquid nitrogen from the LD 25, LD 35 and LD 50 dewars. Up to $81 / \mathrm{min}$ can be withdrawn at max. 0.5 bar. The vessel can also be filled without removing the withdrawal device. Hoses available.

Special stand for the LD 35 with four casters (brakes on two casters) to permit safe, easy tipping.

Tipping stand

Stable design with five casters permits convenient pouring from the LD 25 dewar (with padded vessel clamp) and the Classic 25 by simply tipping the stand.

This all-purpose hand truck permits safe transport of dewars with a capacity of up to 50 I . Tubular steel construction and balloon tires make this hand truck extremely rugged and easy to maneuver. Can be used with a range of dewars.

Taylor-Wharton

Harsco

Sales and Warehouse

Taylor-Wharton Harsco GmbH
Delivery address: Mildstedter Landstraße 1
25866 Mildstedt/Husum
Mailing address: P.O. Box 1470, 25804 Husum
Tel.: ++49 4841/985-0, Fax: ++49 4841/985-130
www.harsco.de, e-mail: info@harsco.de

Logistic and Customer Service

Taylor-Wharton Harsco s.r.o.
Vstupny areal U.S. Steel
04454 Kosice, Slovakia
Tel.: ++421 55727 7127, Fax: ++421 557277157
e-mail: twadmin@tw-slovakia.sk

Taylor-Wharton-Cryogenics USA
4075 Hamilton Boulevard
Theodore, AL 36582
Tel.: ++1-251-443-8680, Fax: ++1-251-443-2209
www.taylorwharton.com, e-mail: twsales@harsco.com
Taylor-Wharton is a member of the:

[^0]: Racks: 10×10 for 100 vial boxes, 5×5 for 25 vial boxes

[^1]: ${ }^{(1)}$ Required for programming and downloading data

